Imaging Studies with the Transporter Probe
99mTc-Mebrofenin Reveal Altered Hepatic Exposure in Patients with Non-Alcoholic Steatohepatitis (NASH)

Kim L. R. Brouwer, PharmD, PhD

Division of Pharmacotherapy and Experimental Therapeutics
UNC Eshelman School of Pharmacy
The University of North Carolina at Chapel Hill
Conflict of Interest Disclosure

- The Brouwer lab receives research funding from the National Institutes of Health, National Institute of General Medical Sciences [Grant R01 GM041935-24], Intercept Pharmaceuticals, and Otsuka Product Development & Commercialization
- Dr. Kim Brouwer is co-inventor of the sandwich-cultured hepatocyte technology for quantification of biliary excretion (B-CLEAR®) and related technologies, which have been licensed exclusively to Qualyst Transporter Solutions, LLC
Outline

- **Background**
 - The Obesity Epidemic
 - Non-Alcoholic Fatty Liver Disease (NAFLD)
 - Non-Alcoholic Steatohepatitis (NASH)
 - NASH-mediated Alterations in Hepatic Transporters
 - 99mTc-Mebrofenin
 - Clinical Probe to Assess Hepatic Transporter Function

- **Results**
 - Imaging Hepatic Exposure of 99mTc-Mebrofenin in Patients with Biopsy-confirmed NASH

- **Conclusions**
The Obesity Epidemic

- Associated with metabolic syndrome
 - Includes: dyslipidemia, hypertension, type II diabetes, and obesity
 - 90% of NAFLD patients have at least one component

The Spectrum of NAFLD

- Steatosis and steatohepatitis comprise Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH).
- In the US, the prevalence of NAFLD is ~30%; NASH prevalence is ~3-5%.

Liver histopathology reveals progression from fatty liver to steatosis, hepatocyte ballooning and lobular inflammation.

Progression to NASH is associated with increased liver-related mortality and morbidity.

What is the Impact of NASH on:

- Hepatic transport protein expression?
- Hepatic transporter function?
- Hepatic exposure to drugs and metabolites?
Hepatic Uptake and Efflux Transporters

(Adapted from Ho and Kim, Clin Pharmacol Ther, 78:260, 2005)
Hepatobiliary Transport Proteins as Underlying Factors in Hepatic Disease

Rotor Syndrome

Dubin-Johnson Syndrome

PFIC Type 2

van de Steeg et al., J Clin Inv, 122:519, 2012
Hepatic Disease-Associated Alterations in Hepatobiliary Transport Proteins

HCV-related Cirrhosis
Primary Biliary Cirrhosis
Obstructive Cholestasis

Chai et al., Hepatology 55:1485, 2012; Ogasawara et al., Drug Metab Pharmacokinet, 25:190, 2010
Zollner et al., Liver Intl, 2007; Takeyama and Sakisaka, Hepatology Res, 42:120, 2012
Altered Expression of Hepatic OATPs in NASH

mRNA

Clarke et al., J Hepatol, 61:139, 2014
Altered Expression of Hepatic OATPs in NASH

mRNA

Protein

Clarke et al., J Hepatol, 61:139, 2014
Increased Expression of Hepatic Efflux Transporters in NASH

Aim #1

Human liver tissue

Normal | Steatosis | NASH (fatty) | NASH (not fatty)

- MRP1
- MRP3
- MRP4
- P-gp
- BCRP
- Pan-Cadherin

Human liver tissue

Hardwick et al., Drug Metab Dispos, 39:2395, 2011
Altered MRP2 Localization and Expression in NASH

Hardwick et al., Drug Metab Dispos, 39:2395, 2011
Impact of NASH-Mediated Changes in Hepatic Transporter Function on Systemic and Hepatic Drug Exposure

(Adapted from Ho and Kim, Clin Pharmacol Ther, 78:260, 2005)
Increased M3G and M6G Serum Concentrations in NASH

<table>
<thead>
<tr>
<th>MG Parameters</th>
<th>Healthy (n=14)</th>
<th>NASH (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (nM)</td>
<td>225 (194-261)</td>
<td>343** (284-413)</td>
</tr>
<tr>
<td>AUC_{0-last} (µM*min)</td>
<td>37 (32-44)</td>
<td>59 ** (42-83)</td>
</tr>
<tr>
<td>Half-life (min)</td>
<td>187 (153-229)</td>
<td>146 (104-205)</td>
</tr>
</tbody>
</table>

Geometric mean (95% CI); ** p<0.01 t-test on log transformed data

Simulations Predict That MRP2 Substrates Have Increased Hepatic Exposure in NASH

99mTc-Mebrofenin (Choletec®): Probe for Transporter-Mediated Hepatobiliary Excretion

- Used clinically as a hepatobiliary imaging agent
- Liver uptake ~98%; negligible metabolism
- Urinary excretion <2% of dose
- Transporter-mediated hepatobiliary disposition
 - Hepatic uptake via OATP1B1 and OATP1B3
 - Biliary excretion via MRP2
 - Basolateral excretion via MRP3

Ghibellini...Brouwer, Pharm Res, 25:1851, 2008
Gamma Scintigraphic Images (0-180 min) of 99mTc-Mebrofenin Hepatic Disposition

- 99mTc-mebrofenin rapidly distributes into the liver, is excreted into bile, and collects in the gall bladder

- Liver $t_{\text{max}} \sim 13$ min
Gamma Scintigraphic Images (0-180 min) of 99mTc-Mebrofenin Hepatic Disposition

- 99mTc-mebrofenin rapidly distributes into the liver, is excreted into bile, and collects in the gall bladder.
- Liver $t_{\text{max}} \approx 13$ min.

Ghibellini et al. AAPS Journal 6 (4) Article 33, 2004
Study Objectives

- Determine the systemic and hepatic exposure of 99mTc-mebrofenin, an organic anion transporter probe, in patients with biopsy-confirmed NASH compared to healthy subjects.
- Utilize a pharmacokinetic model describing the systemic and hepatic disposition of 99mTc-mebrofenin to evaluate NASH-mediated alterations in hepatic transporter function.
Clinical Study Design

- Subjects admitted on morning of study after an overnight fast
- Attenuation correction obtained with a cobalt-57 flood source
- Subjects positioned supine under gamma camera

2.5 mCi i.v. dose

blood sampling

0 2.5 5 7.5 10 15 20 40 60 80 100 120 140 160 180 210 240 270 300 min

Screen/Informed Consent

99mTc-mebrofenin PK

- Subjects discharged following exit exam

- Continuous γ-scintigraphy
- Urine collection
- Attenuation factor
- Safety questionnaire & discharge
Demographics and Clinical Chemistries

<table>
<thead>
<tr>
<th></th>
<th>Control (n=14)</th>
<th>NASH (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>8 M; 6 F</td>
<td>4 M; 3 F</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>14 non-Hispanic</td>
<td>1 Hispanic; 6 Non-Hispanic</td>
</tr>
<tr>
<td>Race</td>
<td>11 Caucasian; 3 African-American</td>
<td>5 Caucasian; 1 Mexican; 1 Asian</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>38.9 ± 15.4</td>
<td>37.4 ± 17.4</td>
</tr>
<tr>
<td>Body Weight (kg)</td>
<td>72.1 ± 12.1</td>
<td>102 ± 16*</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>24.4 ± 2.2</td>
<td>33.3 ± 5.1*</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.86 ± 0.17</td>
<td>0.83 ± 0.15</td>
</tr>
<tr>
<td>Bilirubin, total (mg/dL)</td>
<td>0.729 ± 0.237</td>
<td>0.957 ± 0.391</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>4.20 ± 0.20</td>
<td>4.49 ± 0.38</td>
</tr>
<tr>
<td>ALT (u/L)</td>
<td>28.7 ± 9.8</td>
<td>113 ± 60*</td>
</tr>
<tr>
<td>AST (u/L)</td>
<td>25.2 ± 8.0</td>
<td>72.9 ± 34.3*</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1.56 ± 0.53</td>
<td>8.18 ± 4.56*</td>
</tr>
<tr>
<td>ALP (u/L)</td>
<td>56.3 ± 17.8</td>
<td>68.1 ± 20.0</td>
</tr>
</tbody>
</table>

Mean ± SD; *p < 0.05 using 2-tailed Student’s t-test
Summary

- Hepatic transport protein expression and function are altered in patients with NASH, which may impact the systemic and/or hepatic exposure to substrates [drugs, metabolites, and endogenous compounds (e.g., bile acids)]

- **Impaired MRP2 function**
 - 99mTc-Mebrofenin *hepatic* and systemic exposure were significantly increased in NASH

- **MRP3 upregulation**
 - Morphine glucuronide *systemic* exposure (C_{max}, AUC) and conjugated bile acid serum concentrations were significantly associated with NASH severity

- Patients with NASH have higher fasting and post-prandial exposure to bile acids, including the more hydrophobic and cytotoxic species. Bile acid profiles may be useful in the diagnosis of NASH.
Acknowledgements

Sid Barritt, IV, MD
Marija Ivanovic, PhD
Richard Kowalsky, PharmD
Izna Ali, PharmD
Josh Kaullen, PharmD
Jason Slizgi, PhD
Katsuaki Ito, PhD
Mikko Niemi, MD, PhD
Paul Stewart, PhD
Wei Jia, PhD

Ann Whitlow
Krista Sherrell
Nuclear Medicine & Radiology staff

UNC Hospitals Clinical & Translational Research Center

Brian Ferslew, PharmD, PhD
Giulia Ghibellini, PhD
Nathan Pfeifer, PharmD, PhD
Brandon Swift, PhD

National Institutes of Health Grants: NIH R01 GM41935, MO1 RR00046, UL1 RR025747
UNC-Quintiles Clinical PK/PD Fellowship Program